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Steady two-dimensional free-surface flows of an inviscid and incompressible fluid 
emerging from a nozzle and falling under gravity are calculated numerically. The 
nozzle is aimed a t  an angle p above the horizontal. It is shown that there are flows 
for which the fluid falls down along the underside of the nozzle and other flows which 
split into two sheets. The latter flows occur for each value of p when the Froude 
number F is greater than a critical value. Local solutions are constructed to describe 
the limiting behaviour of the flows as F -+ 0 and as F + CO. 

1. Introduction 
When a stream of fluid emerges from a two-dimensional nozzle aimed a t  an angle 

p above the horizontal, the stream rises to a maximum height and then falls under 
gravity. When the angle p is close to in (i.e. the nozzle is almost vertical), the fluid 
splits into two jets (see figure 1 a) .  On the other hand, when the angle /3 is sufficiently 
small, the fluid falls to one side, for example down along the underside of the nozzle 
as is shown in figure 6. We shall calculate these solutions numerically by assuming 
that the flow is steady, irrotational and two-dimensional and that the fluid is 
incompressible and inviscid. Similar numerical solutions were obtained recently by 
Goh & Tuck (1985) for waterfall flows emerging between horizontal plates and by 
Tuck (1987) for the waterfall from a slit in a vertical wall. 

We shall see that the solutions are determined by the angle p and by the Froude 
number 

11 

Here g is the acceleration due to  gravity, L the width of the nozzle and U the velocity 
far inside the nozzle. Our results show that there is a curve F = F ( P )  (see figure 9) 
which separates the (P,F)-plane into two regions: the region above the curve 
corresponds to the solutions with two jets while the region below the curve 
corresponds to the solutions in which the fluid falls along the underside of the nozzle. 

The problem is formulated in $2 and the results are presented in $52-5. In $2, we 
present the solutions with two jets. In  $3, we consider the asymptotic behaviour of 
the flow as F -+ CO. We show that the limiting flow as F + 00 can be viewed as the flow 
due to  a source placed a t  the top of an inclined wall. A one-parameter family of 
solutions is presented. It includes as a particular case a solution previously computed 
by Mekias & Vanden-Broeck (1989). I n  $4, we present the solutions with only one 
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FIGURE 1. (a )  Sketch of the flow and of the coordinates. Six special points are labelled on the 
boundary. The flow is uniform far inside the nozzle with velocity U. The width of the nozzle is L.  
The inclination of the nozzle with the horizontal is /3. The free-surface profile is a computed solution 
for /3 = 60' and F = 3.0. The vertical scale is the same as the horizontal scale. The broken line is 
the dividing streamline and S is the stagnation point. ( b )  The complex potential plane. The images 
of the six points are shown. (c) The complex [t]-plane. The images of the six points are shown. 
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sheet. Finally, in $ 5 ,  we consider the limit as F + 0. We show that the solutions near 
the lips of the nozzle are described by the ‘pouring flows’ calculated by Vanden- 
Broeck & Keller (1986). In addition, a solution with two jets each with two free 
surfaces is presented. 

2. Flows which split into two jets 
We consider the steady irrotational flow of an incompressible inviscid fluid 

emerging from a nozzle and falling under gravity. We assume that the flow splits into 
two jets (see figure 1 a) and that both jets touch the outside of the nozzle. The nozzle 
has an inclination p with the horizontal, ranging from p = 0 (the nozzle is horizontal) 
to p = in (the nozzle points vertically upward). Two systems of orthonormal 
coordinates are defined : (X, Y) with X horizontal and Y vertical ; and (2, y) with y 
along the direction of the nozzle. Gravity acts in the negative Y-direction. The 
amount of flow emerging from the nozzle is 

Q = UL. (2) 

The pressure is assumed to be constant on the free surface so that Bernoulli’s 

t(u2 + w’) + gY = constant on free surface. equation yields 
(3) 

Here u and v are the x- and y-components of the fluid velocity. The problem is non- 
dimensionalized by taking L as the unit length and U as the unit velocity. The 
discharge is now unity. In terms of the dimensionless variables, the condition (3) 

(4) 
becomes 

$ ( u ~ + v ~ ) + ~ ( ~ s ~ ~ / ~ - x c o ~ / ? )  = constant on free surface. 

We denote the velocity potential by #(x, y) and the stream function by @(x, y). In 
addition we introduce the complex variables z = x+iy and f = #+i@. The flow 
domain in the [ f ]-plane is shown in figure 1 ( b ) .  It is an infinite strip of height 1 with 
a slit starting a t  the point S where the flow separates and extending to + co . This slit 
represents the free surface. The bottom of the strip represents the right side of the 
nozzle and the top of the strip the left side of the nozzle. The amount of fluid a falling 
down along the underside of the nozzle is measured by the height between the bottom 
of the strip and the slit. 

We transform the domain occupied by the fluid in the [ f ]-plane into the upper half 
of the unit disk in the [t]-plane so that the points I ,  2 and J are mapped into the 
points - 1, 0 and 1 (see figure 1 c ) .  The left side of the nozzle goes onto [ - 1,0], the 
right side onto [0,  11 and the free surface onto the upper half-unit circle. We denote 
the images of the points 1,  3 and S by t,, t, and eiY. The transformation from the 
[fl-plane to the [t]-plane can be written in differential form as 

1 
F 

It is easy to show that a and y are related by 

a = i ( l - c o s y )  

We introduce the hodograph variable 

d f  (4 { ( z )  = dx = u-iv. 
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The problem is now to find 5 as an analytic function of t satisfying (4) and the 
kinematic boundary conditions on the real diameter trz [ - 1,1]. Points on the upper 
half-unit circle (i.e. on the free surface) are represented by t = eiu, c r ~  [0, K]. Next we 
differentiate (4) with respect to cr. This yields 

1 
(uu, + vv,) +$ (y, sin p- 2, cos p) = 0. 

Substituting t = eia in (5) and using (7) we find after some algebra 

(9) 
and -=-( ax 1 cosy-coscr 

acr K sincr 

Inserting (9) in (8), we obtain 
cosy-coscr vsinp-ucosp 

uu, + OV, +- )[ u2+v2 ] = o .  

A t  both extremities of the nozzle, the velocity of the fluid is infinite and g must 
have singularities a t  these points. The appropriate singularities are 

5 -  (t--tJ-l as t + t l  

5 -  (t-t,)-l as t + t 3 .  

A t  the point S where the flow separates, the velocity vanishes and the appropriate 
behaviour for 5 is 

6 -  t-eiY as t-te'y. (13) 

The singularities at 1 and J are jet-type singularities (see Birkhoff & Carter 1957 and 
Vanden-Broeck & Keller 1986 for details) and can be combined as 

5 -  [-1n(i-t2)lt as t - + + i .  (14) 

We now define the function Q ( t )  by the relation 

The function D(t)  is analytic for It1 < 1 and continuous for It1 < 1. It can be expanded 
in a power series 

(0 

Q ( t )  = c a, tn .  (16) 
1 

In (15), c is a constant, which we choose to be such that [-In c( 1 - t2)]4 is positive for 
- 1 < t < 1.  We chose c = 0.2. We checked that the computed values of 6 evaluated 
from (15) do not depend on the value of c chosen. From (15), it is easy to show that 
[ ( O )  = -i, i.e. the uniform velocity at  2 is 1.  

The coefficients a, are determined by collocation. To do so we truncate the infinite 
series in (16) after N- 3 terms and we introduce the N -  1 mesh points 

K 
crM=NT(H-$), M =  1 ,..., N-1. 

By using (15) we obtain the values of u, v, u, and v, at the points uM in terms of the 
Coefficients a,. Substituting these expressions into (8) at the points crM we obtain N- 1 
nonlinear algebraic equations for the N unknowns t,, t,, a,(l < n < N - 3 )  and y. The 
Nth equation is obtained by imposing the constraint that the two extremities 1 and 
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FIQURE 2. Same as figure 1 (a) with /3 = 75" and F = 5.0. The broken line represents the 

dividing streamline. For this particular example, 61 YO of the flow goes to the right. 
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Same as figure 2 with /3 = 30" and E' = 5.0. 87 YO of the flow goes to the right. 

3 of the nozzle have the same y ,  i.e. y1 = y3,  The coordinates of 1 and 3 are obtained 
by integrating numerically the equation 

This system of N nonlinear equations with N unknowns is solved by Newton's 
method for given values of F and p. The DN2QNF package of the IMSL library was 
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FIGURE 4. Values of the amount a of water falling down on the right versus the Froude 
number F.  for various values of the inclination /l of the nozzle with the horizontal. 
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FIGURE 5(a). For caption see facing page. 
X 

used for solving the system. The integrations required to compute yl and y3 were 
performed with the IMSL routine DQDAGS. The coefficients a, in the power series 
(16) were found to  decrease like n-2 with increasing n. Most of the computations were 
performed with N = 60. 

Once this system is solved, CL (i.e. the amount of fluid falling along the underside 
of the nozzle) is obtained from (6) and the profile of the free surface is calculated by 
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FIGURE 5. (a )  Computed free-surface flow due to a source at the top of a wall with p = 20". The 
solid curves correspond to  the free surface and the wall. The pbsition of the source is indicated by 
a star. The broken line is the  dividing streamline. 85% of the flow goes to the right. ( b )  Same as 
(a )  with = 90'. (c) Values of the amount a of water falling down on the  right versus the inclination 

(with the horizontal) of the wall on top  of which the source is located. The stars indicate the 
values of a obtained from figure 4 for F = 100. 
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integrating numerically (9) along the unit circle. Of interest also is the dividing 
streamline which terminates a t  S and which corresponds to the line $ = $(S),  
# < # ( S )  in the [fl-plane. Equation ( 5 )  can be integrated to give 
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Since (19) cannot be solved exactly to give t in terms off, Newton's method was used 
to  solve for t in terms off .  Given some q5 and taking ~ = 0 along the dividing 
streamline, the problem is to find t satisfying q5 = f (t). If tn is the nth iterate, the next 
iterate is obtained from 

(20) t n + l =  n f(t")-@ 
-d f/dt(t") ' 

The number of iterations required to find t to an accuracy of lo-, was 2 or 3. 
Typical profiles are shown in figures 2 and 3. In  figure 4, we present values of a 

versus F for different inclinations p of the nozzle. For all values of ,8 between 0 and 
in, solutions with two jets are possible. When p = in, a is always $ because of sym- 
metry. For 0 < p < $IT, as F decreases, a increases until it reaches 1. When a = 1, 
the whole fluid falls down along the underside of the nozzle and the stagnation 
point S coincides with the extremity 1 of the nozzle. This limiting configuration is 
studied in detail in $4. As F --f 00, a approaches a constant value which depends on 
p. Furthermore, the distance between the top of the free surface and the extremities 
of the nozzle tends to infinity. This suggests that as F + 00 the flow approaches the 
flow due to a source placed at the top of an inclined wall. This conjecture is confirmed 
by the calculations presented in the next section. 

3. Flow due to a source 
As F + w ,  the solutions of $2 approach the flow due to a source of strength Q 

placed a t  the top of an inclined wall (see figure 5a).  We shall extend the procedure 
described in $2 to calculate these limiting flow configurations. 

First we introduce dimensionless variables by taking (Qg)f as the unit velocity and 
(Q2/g)i as the unit length. In  these variables, Bernoulli's equation (4) becomes 

$(u2+w2)+ (ysin,!?-xcosp) = constant on free surface. (21) 

The flow configuration in the [f]-plane is the same as in figure 1 (b )  with the points 
1 and 3 a t  @ = - co. As before we map the [ f ]-plane onto the upper half of the unit 
disk in the [t]-plane by using the transformation ( 5 ) .  The complex [t]-plane is the 
same as in figure 1 ( c )  with t, = t, = 0 (i.e. with the points 1 , 2 , 3  at the origin). 

Since there is a source a t  t = 0, the complex velocity 6 must have a singularity a t  
this point. The appropriate singularity is 

1 
6 - F  as t+O.  (22) 

In  addition, 6 must satisfy the relations (13) and (14). Therefore, we write 6 as 

The coefficients a, and the constant y are to  be found for a given value of the 
inclination p. We truncate the infinite series after N - 2  terms and satisfy (21) at the 
collocation points (17). This leads to N - 1  nonlinear equations for the N-1 
unknowns a,(O < n < N - 3 )  and y .  This system is solved, as before, by Newton's 
method. 

Typical profiles for /3 = 20" and ,4 = 90' are shown in figures 5 (a )  and 5 ( b ) .  Flows 
due to submerged sources or sinks have been calculated by previous investigators 
(Tuck & Vanden-Broeck 1984 ; Hocking 1985 ; Vanden-Broeck & Keller 1987a; 
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particular example, p = 4 5 O  and, from top to bottom, F = 0.63,0.45,0.25. 

Mekias & Vanden-Broeck 1989). The profile shown in figure 5 ( b )  for a vertical nozzle 
is in good agreement with the profile shown in figure 8 in Mekias & Vanden-Broeck. 
The acaling is different in Mekias & Vanden-Broeck because the strength of their 
source is twice ours. Since the unit length is (Q2/g);, the scaling ratio is 4; - 1.59. 
Figure 5 ( c )  shows a plot of a versus /3 and a comparison with the values of a obtained 
for F = 100 in the previous section (i.e. for large Froude numbers in figure 4). The 
agreement is good for all values of /3. This constitutes a check on the validity of our 
calculations. When the nozzle is horizontal, a is maximum but slightly less than 1.  

FIGURE 6. Profiles of the free surface for successive values of the Froude number. In this 

4. Flows for which the fluid falls down along the underside of the nozzle 
In this section, we consider flows which fall down along the underside of the nozzle 

(see figure 6). We require the stagnation point S to be below the extremity 1 of the 
nozzle along the side (1,2). As in $2, we use L as the unit length and U as the unit 
velocity. In  the [ f ]-plane, the flow region is the strip - 1 < $ < 0 with the streamline 
(2 ,3 ,  J )  on $ = - 1 and the streamline (2, S ,  J )  on $ = 0. We map i t  onto the upper 
half of the unit disk in the [t]-plane by the transformation ( 5 )  with the choice y = R .  

The image of the stagnation point S in the [t]-plane is - 1 (see figure 1 c ) .  
The appropriate singularity for f: a t  the stagnation point is 

6 -  (t+l)' as t+ -1 ,  (24) 

where r = 2  if $ < / 3 < i n  and T = %  if O < P < + n .  (25) 
R 

Relation (24) expresses the fact that the free surface is horizontal a t  S when 
&R < /3 < +R and forms an angle of in with the wall of the nozzle when 0 < /3 < in. 
This result can be derived by using an argument similar to Stokes' argument showing 
that the angle at the crest of the highest progressive wave must be in (see Dagan & 
Tulin 1972 for details). 
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FIGURE 7. Computed free-surface flow with p = 60" and F = 0.39. The stagnation point 
coincides with one of the extremities of the nozzle. 
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FIQURE 8. Same as figure 7 with an inclination B = 0" and F = 1.05. 

The singularity at 3 is given by (12). At J ,  there is a jet-type singularity 

c -  [ - ln(~-t)]$ as t+1. (26) 

We now write the complex velocity g as 

All the equations in $2 that contain y still hold, with y replaced by 7t. The 
collocation procedure described in the previous sections was used to find the 
coefficients a,. The numerical calculations show that there is a two-parameter family 
of solutions. The two parameters are p and F .  In  the numerical computations, it is 
more convenient to fix t ,  and p (instead of F and p) and to find F as one of the 
unknowns. 

Figure 6 shows a succession of profiles of the free surface for p = 45' and 
various values of the Froude number. As F decreases, the free surface becomes flatter 
and flatter above the nozzle. 

It is interesting to study in more detail the limiting configuration in which the 
stagnation point S coincides with the point 1. This case can also be viewed as the 
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FIGURE 9. Values of the Froude number F versus the inclination P of the nozzle with the 
horizontal. The curve F = F(P)  separates the (P,F)-plane into two regions: the region above the 
curve corresponds to the solutions with two jets while the region below the curve corresponds to 
the solutions with only one jet. 
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limiting configuration of the flow studied in $2 as a+ 1.  In order to  obtain these 
solutions, we add the constraint that the stagnation point S and the extremity 3 of 
the nozzle have the same y, i.e. y( - 1 )  = y ( t 3 ) .  Therefore there is one less parameter. 
The problem is now to find the N unknowns t , ,  a,(l < n < N- 2) and F, for a given 
inclination p of the nozzle. Thus N-1 mesh points are introduced along the free 
surface, the last equation being obtained from y( - 1 )  = y( t3 ) .  

Figures 7 and 8 show typical profiles. Figure 9 shows the value of F versus the 
inclination of the nozzle p. This curve F(P)  separates the (P,F)-plane into two 
regions: the region above the curve corresponds to solutions with two jets and the 
region below to solutions with only one jet. 

5. Low-Froude-number flows viewed as a combination of two pouring 
flows 

In this section, we consider vertical nozzles, although the following considerations 
could be generalized for inclined nozzles. In  the previous section, we observed that 
the free surface is rather flat above the nozzle when the Froude number is sufficiently 
small. This suggests that the solutions as F + 0 can be described near the lips of the 
nozzle by the ‘pouring flows’ calculated by Vanden-Broeck & Keller (1986). These 
pouring flows are flows over a thin wall or weir with one free surface. Some pouring 
flows corresponding to a thin vertical wall a t  x = 0 are shown in figure 10. 

Vanden-Broeck & Keller (1986) used the unit length ( @ / g ) i  where 0 denotes the 
discharge of the pouring flow. Since the unit length used in $2 was L ,  we need to 
rescale the pouring flow solutions of Vanden-Broeck & Keller in order to compare 

16 FLM 213 
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FIGURE 10. Comparison of the exact solution for the flow emerging from a nozzle with pouring 
flows for various values of the Froude number. The solid lines correspond to the solutions described 
in $2. From top to bottom, F = 2.71,0.94,0.21. The dashed 1i:es correspond to scalings of the 
pouring flow solution of Vanden-Broeck & Keller (1980) by (@’)%. 
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FIGURE 11. Solution with two jets each with two free surfaces obtained from the superposition 
of two thin weir flows for F = 0.27. 
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them with the solutions of $2 for F small. Using (1)  and (2) and the fact that 
4 = 2Q, it is easy to show that the appropriate scaling is 

X = x(p)g and y = y(p)g, (28) 

where x and P represent the dimensionless variables used by Vanden-Broeck & 
Keller. 

In figure 10, we present three solutions for a vertical nozzle calculated by the 
scheme of $2 (solid curves). They correspond from top to bottom to F = 2.71,0.94, 
0.21. The three broken curves are the pouring flow solutions rescaled with (28). The 
results show that the pouring flow provides an accurate description of the flow near 
a lip even for relatively large values of the Froude number. Moreover, for F < 0.21, 
the pouring flow agrees with the exact numerical solution for all values of x > -0.5 
(see figure 10). Therefore, for F sufficiently small, the complete free surface can be 
obtained by superposing two pouring flows or more precisely a pouring flow and its 
mirror image. 

Vanden-Broeck & Keller (1986, 19873) also calculated pouring flows with two 
free surfaces (these solutions describe the flow over a thin weir). The results presented 
in this section suggest that these pouring flows with two free surfaces can be 
superimposed to generate new solutions of the nozzle problem for P small. In figure 
11, we present such a solution for F = 0.27. It was obtained by using the thin-weir 
solution of Vanden-Broeck & Keller (19873) (see their figure 4) and by rescaling it by 
(28). It is a solution with two jets each with two free surfaces. The falling parts of the 
jets are not shown. 

REFERENCES 

BIRKHOFF, G. & CARTER, D. 1957 J .  Math. Mech. 6, 769. 
DAQAN, G. & TULIN, M. P. 1972 J .  Fluid Mech. 51, 529. 
GOH, K. H. M. & TUCK, E. 0. 1985 J. Engng M a t h  19, 341. 
HOCKINQ, G. C .  1985 J .  AustraE. Math. SOC. B26, 470. 
MEKIAS, H. & VANDEN-BROECK, J.-M. 1989 Phys. Fluids A 1, 1694. 
TUCK, E. 0.  1987 J. Fluid Mech. 176, 253. 
TUCK, E. 0. & VANDEN-BROECK, J.-M. 1984 J .  Austral. Math. Soc. B25, 443. 
VANDEN-BROECK, J.-M. & KELLER, J.  B. 1986 Phys. Fluide 29, 3958. 
VANDEN-BROECK, J.-M. & KELLER, J. B. 1987a J .  Fluid Mech. 175, 109. 
VANDEN-BROECK, J.-M. & KELLER, J. B. 19876 J .  Fluid Mech. 176, 283. 

18-2 




